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SUMMARY

In this paper, adaptive algorithms for time and space discretizations are added to an existing solution
method previously applied to the Venice Lagoon Tidal Circulation problem. An analysis of the
interactions between space and time discretizations adaptation algorithms is presented. In particular, it
turns out that both error estimations in space and time must be present for maintaining the adaptation
efficiency. Several advantages, for adaptivity and for time decoupling of the equations, offered by the
operator-splitting adopted for shallow water equations solution are presented. Copyright © 1999 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A numerical method for solving the shallow water equations applied to the Venice Lagoon was
developed earlier [1–3]. Here, adaptivity [4,5] for space and time discretizations and algorithm
decoupling in time are introduced. The simplifications made at the model formulation stage
and the way of splitting the operator have revealed some useful properties for this purpose.

The first of the two systems of equations that represents the split operator (Section 2) is
solved explicitly in time and does not contain derivatives in space, i.e. it corresponds to a
system of uncoupled differential equations. This fact makes it easy to perform the stability
analysis and to calculate the critical time step above, which makes the system unstable.
Actually, the system is time varying, so it changes its dynamics at each simulation step and
hence the critical time step value. This suggests the need of adaptively changing the time step
used for the simulation and for this purpose, a posteriori error estimates for the time
discretization error are developed. The splitting and the Taylor series expansion method used
for discretization in time [6] allow the estimates to be calculated easily.

The second system of equations also contains derivatives in space and a posteriori estimates
for the space discretization error are simply obtained by computing two expressions for the
gradient of the solution having different orders of approximation. This estimation method was
developed for structural mechanics problems [7] and is now adapted and applied to time-
dependent fluids.
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The adaptive algorithm performs both mesh refinement and unrefinement. The mesh
unrefinement problem is solved by eliminating nodes selected by a posteriori error estimates
and remeshing the little polygons created, without adding interior nodes. This procedure works
on completely unstructured grids, it is easy to implement and has the advantages that it does
not alter (eventually improves locally) the quality of the mesh and allows the area of unrefined
triangles be controlled (a necessary condition for obtaining a good mesh balancing).

As is well-known in all numerical methods that solve time-dependent problems governed by
partial differential equations, there is a relationship between space–time discretizations granu-
larity and properties of the computed solution. The most important properties are the
convergence of the computed solution to the true one and the order of convergence as finer
discretizations are used. This relation depends in general on the equations involved in the
problem at hand and also on the methods used for discretization in space (e.g. the finite
element space adopted) and in time. For example, it will be seen in the problem of shallow
water solved with a particular splitting method, that the approximation of water elevation is
more sensible to space discretization and the approximation of water flow velocity is more
dependent on time discretization. In principle, if stability is of concern (i.e. the method is not
unconditionally stable), a bound can be obtained of the kind Dt5 f(h), where Dt is the time
step and h is the mesh size. Moreover, if the method is consistent for the approximation error,
a bound can be obtained in which the dependence on h is explicitly formulated (see [8]),
revealing that the error vanishes as h approaches zero with a certain rate. These bounds are
useful indicators for choosing the optimal sizes for the time and space discretizations. Using
finer discretizations than necessary corresponds to a waste of computing resources. The
adaptive techniques arise with the aim of reaching automatically the optimal discretizations
and, in principle, they are efficient because they act locally and so build the discretizations
taking into consideration the various approximation problems along space and time dimen-
sions. Their efficiency level depends mainly on the amount of extra computations required
(with respect to the mere computation of the solution), and on their ability to approach the
optimal Dt and h.

It will be seen in the sequel that adaptation can be corrupted by external phenomena. For
time-dependent problems, the discretization error in time can alter the a posteriori error
estimates in space, and hence produce a non-optimal refinement of the mesh, while the
discretization error in space can alter the a posteriori error estimates in time, thereby making
the adaptive algorithm choose a non-optimal Dt. A solution to this problem is proposed in
Section 5. In Section 6, it is observed that critical time steps for the first system of equations
reveal quite different values. Thanks to the independence of equations resulting from the
splitting, this system can be solved in parallel without data movements between processors,
and each with its appropriate time step (i.e. avoiding the execution of all of them at the
minimum time step allowed).

2. AN ALGORITHM FOR SHALLOW WATER EQUATIONS

In a previous paper [1], an algorithm for solving the shallow water equations was presented.
Here we will sketch it briefly and make some considerations. The solution of the shallow water
problem applied to the Venice Lagoon led to the following semi-linear system:

(h

(t
+
(Hu1

(x1

+
(Hu2

(x2

=0,
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where, having performed the integration of the variables along the vertical dimension,

h=h(x1, x2)= the height of the free surface,

u1=u1(x1, x2)= the velocity component along the x1-direction,

u2=u2(x1, x2)= the velocity component along the x2-direction.

Equation set (2.1) can be written, in vector form, as
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where
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By taking Fi=Fi*+Fi** (i=1, 2), U=U*+U**, with Fi*=0, Fi**=Fi, system (2.2) can be
split into

(U*
(t

=Rs, (2.3)

(U**
(t

+
(F1**
(x1

+
(F2**
(x2

=0. (2.4)

2.1. Solution of Equation (2.3)

Now, thanks to the particular operator-splitting adopted, Equation (2.3) does not contain
derivatives in space and so must be fulfilled at each point of the domain independently; in
particular, we will evaluate it at nodal points of the mesh used for the solution of (2.4). This
corresponds to saying that discretizing (2.3) in space creates a diagonal system of equations.
After performing the discretization in time, the independence of the equations also simplifies
considerably the stability analysis, because this can be performed for each equation separately;
for this reason an explicit formula for the eigenvalues r can be obtained and the condition
�r �B1 easily checked. Moreover, the discretization in time can be easily evaluated by adopting
a second-order Taylor series expansion [6] as follows:

U* (n+1)=U* (n)+Dt
�(U*
(t

�(n)

+
Dt2

2
�(2U*
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the system (2.5) can be rewritten as

U* (n+1)=U* (n)+Dt(Rs)(n)+
Dt2

2
(GRs)(n), (2.6)

where

G=
(Rs

(U*
,

and solved doing straightforward calculations for evaluating (Rs)(n) and (GRs)(n). This dis-
cretization will be advantageous for obtaining a posteriori error estimates for the time
discretization error.

Taking stability of the solution as time goes to infinity (A-stability) into consideration, the
lack of derivatives in space make expressions of the kind Dt5 f(h) senseless, while other
punctual constraints arise; in particular, the following eigenvalue analysis indicates the relation
between A-stability and friction with the bottom (Chezy’s force [2]). At each point where we
evaluate Equation (2.3), we must solve iteratively the following system:
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In Reference [9] an explicit formula for the eigenvalues r of the matrix J* and the expression
for the critical time step value up to which �r �B1, are given. Hence,

tc=
b
3a

−
21/3(−b2+3ac)

3aq1/3 +
q1/3

21/33a
,

where

q=2b3−9abc+27a2d+
4(−b2+3ac)3+ (2b3−9abc+27a2d2),

a= (K0
2+D2)2, b=4D(K0

2+D2), c=8D2, d=8D.

2.2. Solution of Equation (2.4)

For the discretization of Equation (2.4) it is convenient to write it in the extended form
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This is discretized in time according to the u method proposed in [10], giving
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where p=gh, u1 and u2 are real parameters in [0, 1], (Dh**)(n+1)=h**(n+1)−h**(n),
(Dui**)(n+1)=ui**(n+1)−ui**(n) and!ui

(n+u1)=ui
(n)+u1[(Dui*)(n+1)+ (Dui**)(n+1)],

p (n+u2)=p (n)+u2(Dp**)(n+1)

i=1, 2
. (2.9)

After some manipulation and discretizing in space using linear triangular finite elements, we
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where f is the vector of shape functions at all nodes in the mesh. Once the increment in
pressure has been evaluated from (2.10), it can be used for the calculation of (Dui**)(n+1):

M(Dui**)(n+1)= −DtQi [p (n)+u2(Dp**)(n+1)], i=1, 2, (2.12)

where Mi=	V [f ][f ]T dV, in order to obtain the velocity subincrements (Du1**)(n+1) and
(Du2**)(n+1).

The algorithm for evaluating (DU**)(n+1) is unconditionally stable for suitable choices of u1

and u2 [10] and can run at higher time steps than the algorithm that computes (DU*)(n+1). For
this reason it is convenient to run them asynchronously with different time steps.

3. ADAPTIVITY IN SPACE DISCRETIZATION

The adaptivity in space is done through mesh refinement and unrefinement. These are
performed where a posteriori error estimates are above (respectively below) a certain error
tolerance.

A posteriori error estimates are obtained comparing two approximations for the first
derivatives of the solution having different approximation orders. More precisely,
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A better approximation for the derivatives of the computed solution can be obtained using the
same nodal functions used for the computation of the solution, and imposing the Galerkin
orthogonality condition, for finding a continuous piecewise linear approximation s* of the
solution gradient:&

V
NT(s i*− ŝi) dV=0 (i=1, 2),

that is&
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n

U,

Ms i*=QiU.

Note that matrices M and Q were previously evaluated for computing the solution, cf. Section
2.2. Thus, the amount of work in computing s i* is quite small. Defining

ei=s i*− ŝi=Ns i*−
(N
(xi

U (i=1, 2),

and the a posteriori error estimates can be expressed as the sum of each element contribution
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where ek is the kth element of the mesh.
This method of estimating the approximation error was introduced by Zienkiewicz and Zhu

[7] for solving elasticity problems in structural mechanics. In recent years, its properties of
efficiency and of equivalence to the error have been revealed with mathematical rigor [4,11].

Here we apply it to time-dependent fluid flow problems. The estimates on water flow
approximation error are performed separately for velocity and for elevation. The error
estimates are then used for deciding local mesh refinement (i.e. element subdivision) or
coarsening. This process of mesh adaptation turns out to be effective for improving the
approximation of water elevation and less useful for improving the approximation of water
velocity (for which time discretization error plays a greater role).

The mesh adaptation algorithm uses a posteriori error estimates for obtaining a balanced
mesh (i.e. each element gives the same contribution to the error) with the total error below a
certain predetermined tolerance. It is a slight modification of one given in [4] for first balancing
the mesh and then lowering the total error. Mesh adaptation is performed considering the
error in water elevation in OR with the error in water velocity.

Mesh generation and refinement was done by performing Delaunay triangulation. This can
be accomplished today reliably and fast thanks to existing algorithms that can be found on the
Internet (see the Acknowledgement section).

The unrefinement is a little more delicate. Here nodes are eliminated whose adjacent
triangles have error indicators below the desired tolerance, creating in this way ‘polygons’ that
are successively triangulated (again Delaunay) without adding interior nodes. This procedure
seems to have nice properties:
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Figure 1. Automatically generated coarse mesh.

� the number of triangles eliminated is fixed (two every node cancelled); in this way we can
control the areas of triangles also during unrefinement and this is what the adaptive
algorithm requires to reach a ‘balanced mesh’;

� the unrefinement does not degrade mesh quality, and enhances it locally (see Figures 1–3).

Figure 2. Adaptive refinement.
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Figure 3. Two unrefinement examples.

4. ADAPTIVITY IN TIME DISCRETIZATION

4.1. Error estimates for (DU*) (n+1)

Since for discretizing U* we have used a Taylor series expansion, it seems natural to
calculate the discretization error using the remainder in the Lagrange form; it holds that

(DU*)(n+1)=Dt
�(U*
(t

�(n)

+
Dt2

2
�(2U*
(t2

�(n)

+
Dt3

6
�(3U*
(t3

�(j)

. (4.1)

Now, taking into account (2.6), we obtain the expression for the third derivative of U*:�(3U*
(t3

�(j)

=
(

(t
�(2U*
(t2

�(j)

=
(

(t
(GRs)(j), (4.2)

where j is a point in [tn, tn+1].
In this way we have obtained an expression for the third time derivative of U* as a function

of the first time derivative, namely the nodal acceleration. Hence, it is possible to argue the
range of possible values of U (j), given for example, U (n−1), and take the one that produces the
maximum value for the discretized version of the time derivative of U (n),

arg sup
U. � [U MIN,U MAX]

!(GRs)(U. )− (GRs)(U)(n−1)

2Dt
"

= (givenU (n−1))

=arg sup
U. � [U MIN,U MAX]

{(GRs)(U. )}, (4.3)

where UMIN and UMAX are determined having calculated U (n−1) and the maximum accelera-
tion seen at the nodes or argued a priori based on physical considerations. The maximum value
could be computed by putting the first derivatives of the bracketed expression equal to zero,
but this would require solving a non-linear system of equations; actually, we are interested in
the maximum over a small interval of values for U and this can be done in a simple way
looking at the behaviour of the relatively smooth function (GRs)(U. ). The efficiency of the
estimator depends much on the choice of UMIN and UMAX; a too small interval would bring
about underestimation of the error, while a too large interval would bring about overestima-
tion of the error. The range of values indicated by UMIN and UMAX would, however, remain
in a certain measure close to the optimal one (i.e. the range that would give the correct error
estimate) since an unstable growth of the acceleration due to a too large Dt (i.e. underestima-
tion of the error) would bring about a raise in the range (i.e. a potential increase of the error
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estimates and consequently a reduction of the Dt), while an ever stable velocity value would
bring about a reduction in the range (i.e. a potential decrease of the error estimates and
consequently an increase of the Dt). Hence, the adaptive scheme is at least stable.

The time step can be adaptively modified with the simple rule: Dtn+1=q �Dtn, where
q5 (e/errorestimated)1/p and e is the predefined error tolerance, errorestimated is the a posteriori
time discretization error estimates derived above, and here p=2 because the Taylor series
expansion was of order two (see [12]).

We have obtained an expression for the so-called ‘local error’ (i.e. the error in one step).
This serves us for adaptively changing the time step to maintain the local error below a
predetermined tolerance. For purposes that will be explained in Section 5, we need also an
estimate of the so-called ‘global error’, i.e. the total approximation error in the mesh nodes due
to time discretization. For this purpose we must ‘transport to current time all previous local
error and add them up’ (see [12], pp. 160–161). In this situation, this means finding for each
mesh node k, two constants Ck and Lk, namely vector L= [Lk ] is an upper bound for the norm
of G=(Rs/(U* and can be obtained by evaluating at for each node the maximum velocity
observed; C= [Ck ] is the vector of constants where �ek

(n)�5Ck �(h (n−1)) is satisfied at each mesh
node, with ek

(n) the local error estimate obtained before. Then the following expression gives the
global error for the node k :

�Ek
(n)�5hp Ck

Lk

(exp(Lk(Uk
(n)−Uk

(0)))−1).

4.2. Error estimates for (DU**) (n+1)

Consider Equation (2.12); a simple local error estimate for this series expansion is the
following:

eui**
(n+1)=

u1
2

2
[Du*i (n+1)+Du**i (n+1)−Du*i (n)−Du**i (n)] (i=1, 2),

eh**
(n+1)=

u2
2

2
[Dh** (n+1)−Dh** (n)].

5. INTERACTIONS BETWEEN SPACE AND TIME DISCRETIZATIONS

When using a mesh adaptation algorithm for solving a time-dependent problem, one must
consider the possibility that the discretization error in time may corrupt the a posteriori error
estimates in space and the discretization error in space may corrupt the a posteriori error
estimates in time. In fact, U=u+es+et, where es is the discretization error in space and et is
the analogous in time, and the a posteriori error estimators work on U.

Note also that the stability properties as time increases are affected by the discretization
errors in space and in time. Figure 4 shows the mean critical time step (as calculated in Section
2) for all mesh nodes in three situations; note that mesh adaptation allows higher stability
limits than the initial mesh. This can also be seen in the equations of the stability analysis: the
critical time step results to be inversely proportional to D= �U �/(k1

2H), where k1 is Chezy’s
constant, g is the gravity, �U � is the modulus of the computed velocity (i.e. comprises the
approximation errors in time and in space) and H is the depth.

Numerical experiments indicate that two adaptive-in-space simulations with different Dt,
after 3 h of simulation, yield the following results:
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Dt (s) Number of mesh nodes 
ses
 for water elevation

45146510
30 1736 38

From a posteriori error estimates (in space only), the simulation with Dt=30 s appears to
be more accurate than the other, but Figure 5 shows that actually the adaptive-in-space
simulation with Dt=30 s is less accurate than that with Dt=10 s. Hence, a posteriori error
estimates in space are not reliable estimates of the total approximation error and we will see
below that they are not reliable estimates of the space discretization error too. An intuitive
explanation of this fact, confronted by numerical experiments, is that with increasing time
steps, the spatial pattern of water elevation becomes rougher; hence, the a posteriori error
estimators ‘see’ a simpler function to approximate than the true one, so they believe the
approximation error is lower than it is. We could say that due to time discretization error,
finer-scale phenomena are lost. A posteriori error estimates of the time discretization error can
rescue this situation.

Now, it may be difficult to determine a priori if with the tolerances specified there will be
relevant interaction between space and time adaptations as cited above.

For this reason it would be interesting to estimate the deviation produced in a posteriori
time/space error indicators from errors in space/time. This is an object of ongoing work. For

Figure 4. Mean critical time step with different space discretizations: adapted (continuous), coarse (dotted), uniformly
refined (dash–dotted).
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Figure 5. Total approximation error with different constant time steps: 10 s (continuous), 30 s (dotted).

eliminating the bad influence of time discretization error from a posteriori error estimates in
space, we note that U=u+es+et, where es is the approximation error due to space
discretization and et is the approximation error due to time discretization. An error estimate
for et is obtained in Section 4. Let the Zienkiewicz–Zhu criterion (cf. Section 3) be applied to
U to obtain a posteriori error estimates as done in Section 3.&

V
NT(sU* − ŝU) dV=0,

where now sU=su+e s
+set

; hence&
V

NT(s*u+e s
+s*e t

− ŝu+es
− ŝe t

) dV=
&

V
NT(s*u+e s

−ŝu+e s
) dV+

&
V

NT(s*e t
−ŝe t

) dV=0,

that in matrix form, becomes Ms*u+e s
=Qŝu+e s

+ (Qŝu+e t
−Ms*u+e s

). Note that this expres-
sion is equivalent to that calculated in Section 3:

Ms*U=QŝU.

If we choose s*e t
such that Ms*e t

=Qŝe t
, we obtain the a posteriori estimate of the discretization

error in space, free from perturbations produced by the discretization error in time:


s*u+e s
− ŝu+e s


=
(s*U−s*e t
)− (ŝU− ŝe t

)
.

The same can be formulated, with the necessary modifications, for eliminating the influence of
discretization error in space on a posteriori error estimates of discretization error in time.
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6. DOMAIN DECOMPOSITION

6.1. Computation of (DU*) (n+1)

We have seen in Section 2 that Equation (2.3) represents a system of uncoupled differential
equations. Numerical experiments on the Venice Lagoon data shows that the time steps to use
for these equations lies in a quite large interval of values. Adopting an implementation that
solves these equations, divided into groups according to the time step to be used for each one,
in parallel and asyncronously, leads to a certain global execution time saving. As Equation
(2.3) does not have derivatives in space, nodes corresponding to a group of equations do not
have to be contiguous and there are no data movements between groups (i.e. between
processors). This ‘domain decomposition’ strategy combined with time discretization error
estimates allows the algorithm to work on different time scales in an adaptive way.

6.2. Computation of (DU**) (n+1)

Domain decomposition for Equation (2.4) was still considered in [1]. It is based on
non-overlapping subdomains defined by choosing regions (not necessarily contiguous) of the
lagoon at constant depth.

7. CONCLUDING REMARKS

Simplifications on the model based on physical assumptions and a suitable splitting of the
operator before discretization, have shown the possibility of introducing adaptivity in space
and in time using relatively simple mathematical tools.

With semi-discretization methods there are two shortcomings in doing adaptivity in space
and in time. The first one is that, in space, the solution is computed globally in one step, and
hence the error indicators of the solution are computed in one step. In time, the solution is
built incrementally—there is not a global scheme for computing it—hence, the error indica-
tors are built incrementally, which diminishes to some measure their effectiveness. The second
is that two independent adaptive mechanisms control two discretizations that actually interact
with each other. These problems could be overcome by adopting finite element discretizations
in both space and time. This is the subject of current research.
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